Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 ; : 6700-6707, 2021.
Article in English | Scopus | ID: covidwho-1702363

ABSTRACT

This paper presents a mobile UVC disinfection robot designed to mitigate the threat of airborne and surface pathogens. Our system comprises a mobile robot base, a custom UVC lamp assembly, and algorithms for autonomous navigation and path planning. We present a model of UVC disinfection and dosage of UVC light delivered by the mobile robot. We also discuss challenges and prototyping decisions for rapid deployment of the robot during the COVID-19 pandemic. Experimental results summarize a long-term deployment at The Greater Boston Food Bank, where the robot delivers (nightly) UVC dosages of at least 10 mJ/cm to a 4000 ft area in under 30 minutes. These dosages are capable of neutralizing 99% of coronaviruses, including SARS-CoV-2, on surfaces and in airborne particles. Further simulations present how this mobile UVC disinfection robot may be extended to classic problems in robotic path planning and adaptive multi-robot coverage control. © 2021 IEEE.

2.
American Control Conference (ACC) ; : 3158-3163, 2021.
Article in English | Web of Science | ID: covidwho-1485894

ABSTRACT

Many of the policies that were put into place during the Covid-19 pandemic had a common goal: to flatten the curve of the number of infected people so that its peak remains under a critical threshold. This letter considers the challenge of engineering a strategy that enforces such a goal using control theory. We introduce a simple formulation of the optimal flattening problem, and provide a closed form solution. This is augmented through nonlinear closed loop tracking of the nominal solution, with the aim of ensuring close-to-optimal performance under uncertain conditions. A key contribution of this paper is to provide validation of the method with extensive and realistic simulations in a Covid-19 scenario, with particular focus on the case of Codogno - a small city in Northern Italy that has been among the most harshly hit by the pandemic.

3.
Ieee Control Systems Letters ; 5(4):1435-1440, 2021.
Article in English | Web of Science | ID: covidwho-1003900

ABSTRACT

Many of the policies that were put into place during the Covid-19 pandemic had a common goal: to flatten the curve of the number of infected people so that its peak remains under a critical threshold. This letter considers the challenge of engineering a strategy that enforces such a goal using control theory. We introduce a simple formulation of the optimal flattening problem, and provide a closed form solution. This is augmented through nonlinear closed loop tracking of the nominal solution, with the aim of ensuring close-to-optimal performance under uncertain conditions. A key contribution of this letter is to provide validation of the method with extensive and realistic simulations in a Covid-19 scenario, with particular focus on the case of Codogno - a small city in Northern Italy that has been among the most harshly hit by the pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL